Clifford Wavelets and Clifford-valued MRAs

A. Askari Hemmat ${ }^{a}$ and Z. Rahbani ${ }^{b, *}$
${ }^{a}$ Department of Mathematics, Shahid Bahonar University of Kerman, Kerman, Iran
${ }^{b}$ Department of Mathematics, Vali-e-Asr University, Rafsanjan, Iran
E-mail: askari@mail.uk.ac.ir
E-mail: zrahbani@mail.vru.ac.ir

Abstract

In this paper using the Clifford algebra over \mathbb{R}^{4} and its matrix representation, we construct Clifford scaling functions and Clifford wavelets. Then we compute related mask functions and filters, which arise in many applications such as quantum mechanics.

Keywords: Clifford Wavelets, Clifford algebra, Multiresolution Analysis, Wavelets.

2000 Mathematics subject classification: 42C15, 46E15, 50C20, 42B99, 42C05.

1. Introduction

A complex-valued representation of a real 1-dimensional signal is an important tool in analysis of signal processing. The reason is that in its polar representation, the modulus of the complex signal is identified as a local quantitative measure of a signal, called local amplitude, and the argument of the complex signal is identified as a local measure for the qualitative information of a signal, called local phase. First step for generalizing such representation system was quaternion-valued representation, on which a signal can be expressed by four parameters as its local quantitative measures.

[^0]On the other hand wavelets are a very useful and wide applied tools for practical applications in signal and image processing, multi-satellite measurements of electromagnetic wave fields, analysis of climate-related time-series and analysis space weather effects and so on. One usual way to construct wavelets pass through multiresolution analysis (MRA), which is a procedure for constructing wavelets from a scaling function. Now if the scaling function is a matrix of functions, we deal with matrix-valued MRAs. In this paper we show that any real or complex Clifford algebra can be identified with a suitable matrix algebra, then via this representation, Clifford-valued scaling functions, Clifford-valued MRAs and Clifford wavelets are given.
Notations. For an algebra \mathbb{K}, we denote its product with ".". \mathbb{R}, \mathbb{C} and \mathbb{H} are algebra of real numbers, complex numbers and quaternions, respectively. $\mathbb{K}[n]$ is the algebra of $n \times n$ matrices over field \mathbb{K}. $\otimes_{\mathbb{K}}$ denotes tensor product over field \mathbb{K}.

This paper is organized as follow: in second section we introduce the ndimensional Clifford algebra (on brief) and some useful theorems on it, then we discuss the $C l\left(\mathbb{R}^{4}\right)$ and $\mathbb{C l}\left(\mathbb{R}^{4}\right)$ (real and complex forms of Clifford algebra on \mathbb{R}^{4}, resp.) and their matrix representations. Section 3 consists of multiresolition analysis (MRA) and Clifford wavelet structures. In section 4, we compute Clifford wavelets matrices on \mathbb{R}^{4}.

2. Clifford Algebra

In this section we mention some definitions and basic facts about Clifford algebras.

Definition 2.1. let V be a finite dimensional vector space on the field \mathbb{F}. A quadratic form (q-form) on V is a function $h: V \times V \longrightarrow \mathbb{F}$, such that
$h\left(\alpha x_{1}+x_{2}, y\right)=\alpha h\left(x_{1}, y\right)+h\left(x_{2}, y\right)$
$h\left(x, \alpha y_{1}+y_{2}\right)=\alpha h\left(x, y_{1}\right)+h\left(x, y_{2}\right)$.
Furthermore if $h(x, y)=h(y, x)$ then h is called symmetric. For any q-form h, there exists a matrix representation $A=\left(A_{i j}\right)$ such that $A_{i j}=h\left(e_{i}, e_{j}\right)$ where $\left\{e_{1}, e_{2}, \cdots, e_{n}\right\}$ is a basis for V. The q-form h is called nondegenerate, if $\operatorname{det}\left(h\left(e_{i}, e_{j}\right)\right) \neq 0$.
Let V be an n-dimensional vector space on the field F, and h be a nondegenerate symmetric q-form on V, then there exists an ordered basis $B=$ $\left\{e_{1}, e_{2}, \cdots, e_{n}\right\}$ for V such that $A=\left(A_{i j}\right)$ is diagonal. In particular for $\mathbb{F}=\mathbb{R}$

$$
h\left(e_{i}, e_{j}\right)=\left\{\begin{array}{cl}
\pm 1 & \text { if } i=j \\
0 & \text { otherwise }
\end{array}\right.
$$

If the matrix A have p-times 1 and q-times -1 on its diameter such that $p+$ $q=n$, then h will be shown with $h(p, q)$. For h, a nondegenerate q-form on
real vector space V, the pair (V, h) is called a quadratic space(q-space). For describing the Clifford algebra on vector space V, consider the commutative tensor algebra $T(V)=\bigoplus_{r=0}^{\infty} \otimes^{r} V$ on real q-space (V, h) with unit 1 . Let $I_{h}(V)=\langle V \otimes V+h(V, V)\rangle$ then I_{h} is a two-sided ideal in $T(V)$. The quotient space $\frac{T(V)}{I_{h}(V)}$ is called the Clifford algebra on V and is denoted by $C l(V, h)$. The induced product, from tensor product on $\mathrm{T}(\mathrm{V})$, is called Clifford product and will be shown with ".", $(C l(V, h), " . ")$ is again a commutative algebra with unit. If h is $h(p, q)$ then $C l(V, h)$ will be shown by $C l(p, q)$.
By considering the canonical projection map $\pi_{h}: T(V) \longrightarrow C l(V, h)$, one can find that the map $\theta_{V}: V \longrightarrow C l(V, h)$ is one-to-one. This fact says that $C l(V, h)$ is generated by vector space $V \subset C l(V, h)$ and identity 1 , and its product satisfies the following relations:

1) $v \cdot v=-h(v, v) 1 \quad$ for any $v \in C l(V, h)$
2) $v \cdot w+w \cdot v=-2 h(v, w)$.

In view of previous equations we can obtain the universal map for Clifford algebras as follow:

Proposition 2.1. Let \mathcal{A} be a commutative \mathbb{K}-Algebra with unit 1 , and f : $V \longrightarrow \mathcal{A}$ be a linear map such that: $f(v) \cdot f(v)=-h(v, v) 1$ for any $v \in V$, then f can be uniquely extended to the algebraic homomorphism $\widetilde{f}: C l(V, h) \longrightarrow \mathcal{A}$. Furthermore, $C l(V, h)$ is the unique associated \mathbb{K}-Algebra with this property.

In other word if (V, h) is a q-space, then there exists a Clifford algebra associated to it and is unique up to an isomorphism. This is easy to show that if $\left\{e_{1}, e_{2}, \cdots, e_{n}\right\}$ is an orthonormal basis for real vector space V, then the set $\left\{1, e_{i}, e_{i} e_{j}, e_{i} e_{j} e_{k}, \cdots, e_{1} e_{2} e_{3} \cdots e_{n}: i+1=j, j+1=k\right\}$ is a basis for $C l(V, h)$. Note that $C l(V, h)=\frac{T(V)}{I_{h}}=\frac{R \oplus V \otimes V \oplus V \otimes V \otimes V \oplus \cdots}{\langle V \otimes V+h(V) 1\rangle}$, and
$T(V)=a_{0}+\sum_{i=1}^{n} a_{i} e_{i}+\sum a_{i j} e_{i} \otimes e_{j}+\sum a_{i j k} e_{i} \otimes e_{j} \otimes e_{k}+\cdots+a_{i_{1} \ldots i_{n}} e_{1} \otimes e_{2} \otimes \ldots \otimes e_{n}$.
Also $V \otimes V+h(V) 1=0 \quad$ implies that $\quad V \otimes V=-h(V) 1$.
Example 2.2. Let $V=R^{2}$, and h be the quadratic form obtained by the matrix

$$
\begin{aligned}
& h=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right), \text { i.e } V=\mathbb{R}^{2}=\left\langle e_{1}, e_{2}\right\rangle . \operatorname{Dim} V=2, \text { so } \operatorname{dim} C l(V)=4 \text { and } \\
& \begin{aligned}
C l(V) & =C l\left(\mathbb{R}^{2}\right)=\left\langle 1, e_{1}, e_{2}, e_{1} e_{2}\right\rangle \\
& =\left\{a_{0}+a_{1} e_{1}+a_{2} e_{2}+a_{12} e_{1} e_{2}: e_{1}^{2}=e_{2}^{2}=-1, e_{1} \cdot e_{2}=-e_{2} \cdot e_{1}\right\}
\end{aligned}
\end{aligned}
$$

where $\left(e_{1} \cdot e_{2}\right)^{2}=e_{1} e_{2} e_{1} e_{2}=-e_{1} e_{1} e_{2} e_{2}=(-1)(-1)(-1)=-1$.
So if we define $\psi: C l\left(\mathbb{R}^{2}\right) \longrightarrow \mathbb{H}$ by

$$
\psi(1)=1, \psi\left(e_{1}\right)=i, \psi\left(e_{2}\right)=j, \psi\left(e_{1} e_{2}\right)=\psi\left(e_{3}\right)=k
$$

then, since ψ is an algebraic homomorphism, $C l\left(\mathbb{R}^{2}\right) \cong \mathbb{H}$.

There are useful algebraic isomorphisms for $C l(p, q)$ such as

$$
\begin{gather*}
C l(n, 0) \otimes C l(0,2) \cong C l(0, n+2) \tag{2.1}\\
C l(0, n) \otimes C l(2,0) \cong C l(n+2,0) \\
C l(p, q) \otimes C l(1,1) \cong C l(p+1, q+1),
\end{gather*}
$$

where $n, p, q \geq 0$ such that $n=p+q$.
Now we introduce a useful tool. Complexification is one of the important tools in linear algebra which make it more flexible. Let (V, h) be a real q-space. The complexification of V is the vector space $W=V \otimes_{\mathbb{C}} \mathbb{C}$ such that for $w \in W: w=v \otimes \lambda=v \otimes(a+i b)=v \otimes a+v \otimes i b=1 \otimes a v+i(1 \otimes b v)$. This means that any element of W can be written as $x+i y$ where $x, y \in V$. Now let g be a nondegenerate q -form on V. Then $g_{W}: W \times W \longrightarrow \mathbb{C}$ is a nondegenerate q-form on $W=V \otimes \mathbb{C}$ defined by $g_{W}(x \otimes \lambda, y \otimes \gamma)=\lambda \gamma g(x, y)$. From this point of view the complexification of $C l(V)$ is $C l(V) \otimes \mathbb{C}$ and if $W=V \otimes_{\mathbb{C}} \mathbb{C}$ then $C l(W)=C l(V) \otimes_{\mathbb{R}} \mathbb{C}$.

Lemma 2.3. Let V be a real n-dimensional vector space, then

$$
\mathbb{C} l\left(V \oplus \mathbb{R}^{2}\right) \otimes \mathbb{C} \cong\left(C l(V) \otimes_{\mathbb{R}} \mathbb{C}\right) \otimes_{\mathbb{C}}\left(C l\left(\mathbb{R}^{2}\right) \otimes \mathbb{C}\right) .
$$

Proof. Let $\left\{\nu_{1}, \cdots, \nu_{n}\right\}$ be an orthonormal basis for V and $\left\{e_{1}, e_{2}\right\}$ be the standard basis for \mathbb{R}^{2}. Consider the real map $\theta: V \oplus \mathbb{R}^{2} \longrightarrow\left(C l(V) \otimes_{\mathbb{R}} \mathbb{C}\right) \otimes_{\mathbb{C}}$ $\left(C l\left(\mathbb{R}^{2}\right) \otimes \mathbb{C}\right)$ defined by

$$
\left(\nu_{j}, 0\right) \longmapsto i \nu_{j} \otimes e_{1} e_{2}, \quad 1 \leq j \leq n, \quad\left(0, e_{r}\right) \longmapsto 1 \otimes e_{r} r=1,2 .
$$

so θ extends to algebra homomorphism $\mathbb{C l}\left(V \oplus \mathbb{R}^{2}\right) \otimes \mathbb{C} \cong\left(C l(V) \otimes_{\mathbb{R}} \mathbb{C}\right) \otimes_{\mathbb{C}}$ $\left(C l\left(\mathbb{R}^{2}\right) \otimes \mathbb{C}\right)$. On the other hand domain and range of θ have the same dimension and it is onto, so θ is isometry.
the following lemma is the key tool for describing the complex Clifford algebras.

Lemma 2.4. Let V be a real vector space such that $\operatorname{dim} V=2 n$, then $C l(V) \otimes_{\mathbb{R}} \mathbb{C}$ is isomorphic to the matrix algebra $\mathbb{C}\left[2^{n}\right]$. If $\operatorname{dim} V=2 n+1$ then $C l(V) \otimes_{\mathbb{R}} \mathbb{C}$ is isomorphic to $\mathbb{C}\left[2^{n}\right] \oplus \mathbb{C}\left[2^{n}\right]$.

Proof. We refer interested reader to [2], for an extended proof.
2.1. Construction of Clifford Algebra on \mathbb{R}^{4}. Now we are going to show that for $V=\mathbb{R}^{4}, C l(V)$ is $\mathbb{H}[2] \cong \mathbb{C}[4]$. We know that, via the algebraic isomorphism

$$
a+b i+c j+d k \longmapsto\left(\begin{array}{rr}
a+i d & b+i c \\
-b+i c & a-i d
\end{array}\right),
$$

\mathbb{H} is isomorphic to $\mathbb{C}[2]$. Now if $V=\mathbb{R}^{4}=\left\langle e_{0}, e_{1}, e_{2}, e_{3}\right\rangle$ with Riemannian form $h=\left(\begin{array}{llll}1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1\end{array}\right)$ on it, then
$C l\left(\mathbb{R}^{4}\right)=\left\{a_{0}+\sum_{i=1}^{4} a_{i} e_{i}+\sum_{i<j} a_{i j} e_{i} e_{j}+\sum_{i<j<k} a_{i j k} e_{i} e_{j} e_{k}+a_{1234} e_{1} e_{2} e_{3} e_{4}: e_{i} e_{j}=-e_{j} e_{i}, e_{i}^{2}=-1, a_{i} \in \mathbb{R}\right\}$
this means that $C l\left(\mathbb{R}^{4}\right)$ is spanned by $2^{4}=16$ vectors:

$$
\begin{gathered}
1, E_{1}, E_{2}, E_{3}, E_{4}, E_{1} E_{2}, E_{1} E_{3}, E_{1} E_{4}, E_{2} E_{3}, E_{2} E_{4}, E_{3} E_{4} \\
E_{1} E_{2} E_{3}, E_{1} E_{2} E_{4}, E_{1} E_{3} E_{4}, E_{2} E_{3} E_{4}, E_{1} E_{2} E_{3} E_{4}
\end{gathered}
$$

as a basis. On the other hand

$$
C l(0,2)=C l\left(\mathbb{R}^{2},\left(\begin{array}{rr}
-1 & 0 \\
0 & -1
\end{array}\right)\right)=\left\langle e_{0}, e_{1}, e_{2}, e_{3}=e_{1} e_{2}\right\rangle
$$

where $e_{0}=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right), e_{1}=\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right), e_{2}=\left(\begin{array}{rr}1 & 0 \\ 0 & -1\end{array}\right), e_{3}=\left(\begin{array}{rr}0 & -1 \\ 1 & 0\end{array}\right)$ such that $e_{0}^{2}=e_{1}^{2}=e_{2}^{2}=1,\left(e_{1} e_{2}\right)^{2}=-1$ and

$$
C l(2,0)=C l\left(\mathbb{R}^{2},\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)\right) \cong \mathbb{H}=\left\langle e_{0}^{\prime}, e_{1}^{\prime}, e_{2}^{\prime}, e_{3}^{\prime}=e_{1}^{\prime} e_{2}^{\prime}\right\rangle
$$

where $e_{0}{ }^{\prime}=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right), e_{1}{ }^{\prime}=\left(\begin{array}{rr}0 & 1 \\ -1 & 0\end{array}\right), e_{2}{ }^{\prime}=\left(\begin{array}{cc}0 & i \\ i & 0\end{array}\right), e_{3}{ }^{\prime}=\left(\begin{array}{rr}i & 0 \\ 0 & -i\end{array}\right)$.
Now if in (2.1) we set $n=2$ then

$$
C l(0,2) \otimes C l(2,0) \cong C l(4,0)
$$

Through the relation $A \otimes B=\left(A_{i j} B\right)$ between matrices we can find the matrix representation for $C l(4,0)$'s bases:
$E_{0}=e_{0} \otimes e_{0}^{\prime}=I, E_{1}=e_{0} \otimes e_{3}^{\prime}, E_{2}=e_{2} \otimes e_{1}^{\prime}, E_{3}=e_{1} \otimes e_{1}^{\prime}, E_{4}=$ $e_{0} \otimes e_{2}^{\prime}, \quad E_{1} E_{2}=e_{2} \otimes e_{2}^{\prime}, \quad E_{1} E_{3}=e_{1} \otimes e_{2}^{\prime}, \quad E_{1} E_{4}=-\left(e_{0} \otimes e_{1}^{\prime}\right), \quad E_{2} E_{3}=$ $e_{3} \otimes e_{0}^{\prime}, \quad E_{2} E_{4}=e_{1} \otimes e_{3}^{\prime}, \quad E_{3} E_{4}=e_{2} \otimes e_{3}^{\prime}, \quad E_{1} E_{2} E_{3}=e_{3} \otimes e_{3}^{\prime}, \quad E_{1} E_{2} E_{4}=$ $-\left(e_{2} \otimes e_{0}^{\prime}\right), \quad E_{2} E_{3} E_{4}=e_{3} \otimes e_{2}^{\prime}, \quad E_{1} E_{3} E_{4}=-\left(e_{1} \otimes e_{0}^{\prime}\right), E_{1} E_{2} E_{3} E_{4}=-\left(e_{3} \otimes\right.$ $\left.e_{1}^{\prime}\right)$.
This means that for any $\rho \in C l\left(\mathbb{R}^{4}\right)$ we have

$$
\begin{gathered}
\rho=a_{0}+a_{1} E_{1}+a_{2} E_{2}+a_{3} E_{3}+a_{4} E_{4}+a_{12} E_{1} E_{2}+a_{13} E_{1} E_{3}+a_{14} E_{1} E_{4}+a_{24} E_{2} E_{4} \\
+ \\
+a_{34} E_{3} E_{4}+a_{23} E_{2} E_{3}+a_{123} E_{1} E_{2} E_{3}+a_{124} E_{1} E_{2} E_{4} \\
+a_{234} E_{2} E_{3} E_{4}+a_{134} E_{1} E_{3} E_{4}+a_{1234} E_{1} E_{2} E_{3} E_{4}
\end{gathered}
$$

By the above matrix representation for E_{i} 's, associated matrix to ρ is:

$$
\left(\begin{array}{llll}
a_{0}+a_{1} i+a_{34} i- & a_{2}+a_{4} i+a_{12} i- & -a_{24} i-a_{23}-a_{123} i- & a_{3}+a_{13} i a_{234} i+ \\
a_{124} & a_{14} & a_{134} & a_{1234} \\
-a_{2}+a_{4} i+a_{12} i+ & a_{0}-a_{1} i-a_{34} i- & -a_{3}+a_{13} i-a_{234} i- & -a_{23}+a_{24} i+a_{123} i- \\
a_{14} & a_{124} & a_{1234} & a_{134} \\
a_{23}+a_{24} i+a_{123} i- & a_{3}+a_{13} i+a_{234} i- & a_{0}+a_{1} i-a_{34} i+ & -a_{2}+a_{4} i-a_{12} i- \\
a_{134} & a_{1234} & a_{124} & a_{14} \\
-a_{3}+a_{13} i+a_{234} i+ & a_{23}-a_{24} i-a_{123} i- & a_{2}+a_{4} i-a_{12} i+ & a_{0}-a_{1} i+a_{34} i+ \\
a_{1234} & a_{134} a & a_{14} & a_{124}
\end{array}\right)
$$

Now if we set
$A_{1}=a_{0}+i a_{1}, \quad B_{1}=-a_{124}+i a_{34}, \quad A_{2}=a_{2}+i a_{4}, \quad B_{2}=a_{14}+i a_{12}, \quad A_{3}=$ $a_{23}+i a_{24}, \quad B_{3}=-a_{134}+i a_{123}, \quad A_{4}=a_{3}+i a_{13}, \quad B_{4}=a 1234+i a_{234}$, and then set $A=A_{1}+B_{1}, \quad B=A_{1}-B_{1}, \quad C=A_{2}-\overline{B_{2}}, \quad D=A_{2}+\overline{B_{2}}$, $E=A_{3}+B_{3}, \quad F=-A_{3}+B_{3}, \quad G=A_{4}+\overline{B_{4}}, \quad H=A_{4}-\overline{B_{4}}, \rho$ can be shown as

$$
\rho \cong\left(\begin{array}{cccc}
A & -C & F & -G \tag{2.2}\\
\bar{C} & \bar{A} & \bar{G} & \bar{F} \\
E & -H & B & -D \\
\bar{H} & \bar{E} & \bar{D} & \bar{B}
\end{array}\right):=M_{Q}
$$

A simpler representation for ρ is $\rho=\left(\begin{array}{ll}\alpha & \beta \\ \gamma & \lambda\end{array}\right)$, which is a 2×2-matrix in \mathbb{H}, with $\alpha=A-j \bar{C}, \beta=F-j \bar{G}, \gamma=E-j \bar{H}, \lambda=B-j \bar{D}$.
Till now we've found the matrix representations for $C l\left(\mathbb{R}^{4}\right)$ such that $\mathbb{H}[2] \cong$ $\mathbb{C}[4]$. By considering the complexification of $C l\left(\mathbb{R}^{4}\right)$ we will work with $\mathbb{C}[4]$, which is a more general and flexible case.
Let M_{Q} be the set of all 4×4-matrices in $\mathbb{C}[4]$ which are like above then M_{Q} excepting the zero matrix is a subgroup of $G L(2, \mathbb{C})$ in the sense of matrix multiplication.
In next step we generalize these concepts to an MRA.

3. $\mathbb{C l}\left(\mathbb{R}^{4}\right)$-valued MRA

3.1. General construction and mask functions. Let $L^{2}(\mathbb{R}, \mathbb{C}[r])=\{\mathbf{F}(t)=$ $\left.\left(F_{m, n}(t)\right): t \in \mathbb{R}, F_{m, n} \in L^{2}(\mathbb{R}), 1 \leq m, n \leq r\right\}$ be the space of matrixvalued functions defined on \mathbb{R} with values in $\mathbb{C}[r]$. The norm on $L^{2}(\mathbb{R}, \mathbb{C}[r])$ is the Ferobenious norm : $\|\mathbf{F}(t)\|=\left[\sum_{m, n} \int_{\mathbb{R}}\left|F_{m, n}(t)\right|^{2} d t\right]^{\frac{1}{2}} \quad$ and for $\mathbf{F}, \mathbf{G} \in$ $L^{2}(\mathbb{R}, \mathbb{C}[r])$, the "inner product" is defined by $\langle\mathbf{F}, \mathbf{G}\rangle_{L^{2}(\mathbb{R}, \mathbb{C}(r))}:=\int_{\mathbb{R}} \mathbf{F}(t) \mathbf{G}^{\dagger}(t) d t$ where \mathbf{G}^{\dagger} is the complex conjugate transpose of \mathbf{G}. As pointed out in [7] and [8] such operation, which is an integral of matrix product, is not really an inner product but it has the linear and commutative properties:

1. $\left\langle\mathbf{F}_{1}, a \mathbf{F}_{2}+b \mathbf{F}_{3}\right\rangle=a^{\dagger}\left\langle\mathbf{F}_{1}, \mathbf{F}_{2}\right\rangle+b^{\dagger}\left\langle\mathbf{F}_{1}, \mathbf{F}_{3}\right\rangle$
2. $\left\langle\mathbf{F}_{1}, \mathbf{F}_{2}\right\rangle=\left\langle\mathbf{F}_{2}, \mathbf{F}_{1}\right\rangle^{\dagger}$.

Here the orthogonality of \mathbf{F}_{j} and \mathbf{F}_{k} is identified with $\left\langle\mathbf{F}_{j}, \mathbf{F}_{k}\right\rangle=I_{r} \delta_{j k}$ where I_{r} is identity matrix and $\delta_{j k}$ the Kronecker delta. Now let $\mathbf{X}(t)$ be a $\mathbb{C l}\left(\mathbb{R}^{4}\right)$ valued function. Then $\mathbf{X}(t)$ via its components has a representation like M_{Q}, as shown in (2.2) and matrix representation of $\mathbf{X}(t)$ is shown with $M_{Q}(\mathbf{X})$. Define $L_{M_{Q}}^{2}(\mathbb{R}, \mathbb{C}[4])=\left\{M_{Q}(\mathbf{X}): x_{i j} \in L^{2}(\mathbb{R}), 1 \leq i, j \leq 4\right\} \subseteq L^{2}(\mathbb{R}, \mathbb{C}[4])$, and

$$
L^{2}\left(\mathbb{R}, \mathbb{C} l\left(\mathbb{R}^{4}\right)\right)=\left\{\mathbf{X}(t)=x_{0}(t)+x_{1}(t) E_{1}+\ldots+x_{1234}(t) E_{1234}: x_{i} \in L^{2}(\mathbb{R})\right\}
$$

then we can identify $L^{2}\left(\mathbb{R}, \mathbb{C l}\left(\mathbb{R}^{4}\right)\right)$ with $L_{M_{Q}}^{2}(\mathbb{R}, \mathbb{C}[4])$ by $T: L^{2}\left(\mathbb{R}, \mathbb{C l}\left(\mathbb{R}^{4}\right)\right) \longrightarrow$ $L_{M_{Q}}^{2}(\mathbb{R}, \mathbb{C}[4])$ such that

$$
\mathbf{X}(t) \longmapsto\left(\begin{array}{cccc}
x_{A} & -x_{C} & x_{F} & -x_{G} \\
\bar{x}_{C} & \bar{x}_{A} & \bar{x}_{G} & \bar{x}_{F} \\
x_{E} & -x_{H} & x_{B} & -x_{D} \\
\bar{x}_{H} & \bar{x}_{E} & \bar{x}_{D} & \bar{x}_{B}
\end{array}\right)=M_{Q}(\mathbf{X})
$$

where $x_{A}=x_{0}(t)+i x_{1}(t)+i x_{34}(t)-x_{124}(t)$ and all other entries are similar to M_{Q} 's entries.
Immediately we realize that $\langle\mathbf{X}, \mathbf{Y}\rangle_{L^{2}\left(\mathbb{R}, \mathbb{C} l\left(\mathbb{R}^{4}\right)\right)} \longmapsto\left\langle M_{Q}(\mathbf{X}), M_{Q}(\mathbf{Y})\right\rangle_{L_{M_{Q}}^{2}}(\mathbb{R}, \mathbb{C}[4])$, where $\langle\mathbf{X}, \mathbf{Y}\rangle_{L^{2}\left(\mathbb{R}, \mathbb{C} l\left(\mathbb{R}^{4}\right)\right)}=\int_{\mathbb{R}} \mathbf{X} \mathbf{Y}^{\dagger} d t$.
Now by considering $\mathbb{C l}\left(\mathbb{R}^{4}\right) \cong \mathbb{C}[4]$, we will investigate some results in matrixvalued MRAs.

Definition 3.1. The matrix-valued function $\Phi(t)=\left(\varphi_{m, n}(t)\right)_{r \times r} \in L^{2}(\mathbb{R}, \mathbb{C}[r])$ generates a matrix-valued multiresolution analysis for $L^{2}(\mathbb{R}, \mathbb{C}[r])$ if the subspaces $\mathbf{V}_{j}=\operatorname{span}\left\{2^{\frac{j}{2}} \Phi\left(2^{j} t-k\right): k \in \mathbb{Z}\right\}$ are nested: $\cdots \subset \mathbf{V}_{-1} \subset \mathbf{V}_{0} \subset$ $\mathbf{V}_{1} \subset \mathbf{V}_{2} \cdots$, and the following conditions hold:

1) $\overline{\bigcup_{j \in \mathbb{Z}} \mathbf{V}_{j}}=L^{2}(\mathbb{R}, \mathbb{C}[r])$,
2) $\cap \mathbf{V}_{j}=0_{r}$, in which 0_{r} is the $r \times r$-zero matrix.
3) $\mathbf{X}(t) \in \mathbf{V}_{0} \Longleftrightarrow \mathbf{X}\left(2^{j} t\right) \in \mathbf{V}_{j}, \quad j \in \mathbb{Z}$,
4) $\mathbf{X}(t) \in \mathbf{V}_{0} \Longleftrightarrow \mathbf{X}(t-k) \in \mathbf{V}_{0}, \quad k \in \mathbb{Z}$,
5) $\{\Phi(t-k): k \in \mathbb{Z}\}$ form an orthonormal basis for \mathbf{V}_{0}.

Remark 3.1. : A sequence $\left\{\Phi_{k}\right\}_{k \in \mathbb{Z}}$ in $L^{2}(\mathbb{R}, \mathbb{C}(r))$ is called an orthonormal basis if it is an orthonormal set, $\left\langle\Phi_{j}, \Phi_{k}\right\rangle=\boldsymbol{I}_{r} \delta_{j k}$, and for any $\boldsymbol{X}(t) \in$ $L^{2}(\mathbb{R}, \mathbb{C}[r])$ there exists constant matrix-sequence $\left\{\boldsymbol{A}_{k}\right\}_{k \in \mathbb{Z}}$ such that $\boldsymbol{X}(t)=$ $\sum_{k \in \mathbb{Z}} \boldsymbol{A}_{k} \Phi_{k}(t)$.

Condition (5) means that $X(t)=\sum_{k \in \mathbb{Z}} \mathbf{A}_{k} \Phi_{k}(t-k)$, which Ferobenious norm will guarantee the convergence of infinite sum, and $\mathbf{A}_{k}=\left\langle X, \Phi_{k}(t-k)\right\rangle$ by orthonormality. Also since $\Phi(t) \in \mathbf{V}_{0} \subset \mathbf{V}_{1}$, then the two-scale matrix dilation equation is

$$
\begin{equation*}
\Phi(t)=\sqrt{2} \sum_{k \in \mathbb{Z}} \mathbf{G}_{k} \Phi(t-k) \tag{3.1}
\end{equation*}
$$

which combined with orthonormality of Φ 's means

$$
\begin{equation*}
\sum_{k \in \mathbb{Z}} \mathbf{G}_{k} \mathbf{G}_{2 l+k}^{\dagger}=\mathbf{I}_{r} \delta_{l 0}, \quad l \in \mathbb{Z} . \tag{3.2}
\end{equation*}
$$

Let $\widehat{\mathbf{G}}(f)=\sum_{k \in \mathbb{Z}} \mathbf{G}_{k} e^{-2 \pi i k f}$ be the matrix mask function, then (3.2) implies that

$$
\begin{equation*}
\widehat{\mathbf{G}}(f) \widehat{\mathbf{G}}^{\dagger}(f)+\widehat{\mathbf{G}}\left(f+\frac{1}{2}\right) \widehat{\mathbf{G}}^{\dagger}\left(f+\frac{1}{2}\right)=2 I_{r}, \tag{3.3}
\end{equation*}
$$

Define matrix Fourier transform for $\Phi(t)$ by $\widehat{\Phi}(f):=\int_{\mathbb{R}} \Phi(t) e^{-2 \pi i k f t} d t$. Then (3.1) gives $\widehat{\Phi}(f)=\frac{1}{\sqrt{2}} \widehat{\mathbf{G}}\left(\frac{f}{2}\right) \widehat{\phi}\left(\frac{f}{2}\right)$, where by setting $f=0$ we get $\widehat{\mathbf{G}}(0)=$ $\sum \mathbf{G}_{k}=\sqrt{2} \mathbf{I}_{r}, \widehat{\mathbf{G}}\left(\frac{1}{2}\right)=0$. Define the function matrix $\Psi(t)=\left(\psi_{m, n}(t)\right)_{r \times r} \in$ $L^{2}(\mathbb{R}, \mathbb{C}[r])$ and corresponding subspace $\mathbf{W}_{j}=\operatorname{span}\left\{2^{\frac{j}{2}} \Psi\left(2^{j} t-k\right): k \in\right.$ $\mathbb{Z}\} . \mathbf{W}_{j}$ is orthogonal complement of \mathbf{V}_{j} in \mathbf{V}_{j+1} i.e. $\mathbf{V}_{j+1}=\mathbf{V}_{j} \oplus \mathbf{W}_{j}$, $\mathbf{V}_{j} \perp \mathbf{W}_{j}$ and $\bigoplus_{j \in \mathbb{Z}} \mathbf{W}_{j}=L^{2}(\mathbb{R}, \mathbb{C}[r])$. Since $\Psi(t) \in \mathbf{W}_{0} \subseteq \mathbf{V}_{1}$, then $\Psi(t)=\sqrt{2} \sum_{k \in \mathbb{Z}} \mathbf{H}_{k} \Phi(2 t-k)$. Combining this formula with (3.1) gives us

$$
\begin{equation*}
\sum_{k \in \mathbb{Z}} \mathbf{G}_{k} \mathbf{H}_{2 l+k}^{\dagger}=0_{r}, \quad l \in \mathbb{Z} . \tag{3.4}
\end{equation*}
$$

Now if $\widehat{\mathbf{H}}(f)=\sum_{k \in \mathbb{Z}} \mathbf{H}_{k} e^{-2 \pi i k f}$ then

$$
\begin{equation*}
\widehat{\mathbf{H}}(f) \widehat{\mathbf{G}}^{\dagger}(f)+\widehat{\mathbf{H}}\left(f+\frac{1}{2}\right) \widehat{\mathbf{G}}^{\dagger}\left(f+\frac{1}{2}\right)=0_{r}, \tag{3.5}
\end{equation*}
$$

and $\widehat{\Psi}(f)=\frac{1}{\sqrt{2}} \widehat{H}\left(\frac{f}{2}\right) \widehat{\phi}\left(\frac{f}{2}\right)$. If $\{\Psi(t-k): k \in \mathbb{Z}\}$ is an orthonormal basis for \mathbf{W}_{0} then

$$
\langle\Psi, \Psi(t-k)\rangle=\int_{\mathbb{R}} \Psi(t) \Psi(t-k) d t=\mathbf{I}_{r} \delta_{k 0} \quad k \in \mathbb{Z},
$$

which implies the following relation for the matrix of wavelet mask function:

$$
\begin{equation*}
\sum_{k \in \mathbb{Z}} \mathbf{H}_{k} \mathbf{H}_{2 l+k}^{\dagger}=I_{r} \delta_{l 0}, \quad l \in \mathbb{Z} . \tag{3.6}
\end{equation*}
$$

This is equivalent to

$$
\begin{equation*}
\widehat{\mathbf{H}}(f) \widehat{\mathbf{H}}^{\dagger}(f)+\widehat{\mathbf{H}}\left(f+\frac{1}{2}\right) \widehat{\mathbf{H}}^{\dagger}\left(f+\frac{1}{2}\right)=2 I_{r} . \tag{3.7}
\end{equation*}
$$

Define $\widehat{\mathbf{M}}(f)=\left(\begin{array}{cc}\widehat{\mathbf{G}}(f) & \widehat{\mathbf{G}}\left(f+\frac{1}{2}\right) \\ \widehat{\mathbf{H}}(f) & \widehat{\mathbf{H}}\left(f+\frac{1}{2}\right)\end{array}\right)$ then equations (3.3),(3.5),(3.7) all together are equivalent to

$$
\begin{equation*}
\widehat{\mathbf{M}}(f) \widehat{\mathbf{M}}^{\dagger}(f)=2 I_{2 r}, \tag{3.8}
\end{equation*}
$$

which means $\widehat{\mathrm{M}}(f)$ is a paraunitary matrix.
3.2. Construction of filters. After constructing the mask function representation, now we are ready to describe and build filters. Suppose that $\widehat{\mathbf{G}}(f)$ is a finite polynomial matrix in $e^{-2 \pi i f}$, i.e. can be written in the form $\widehat{\mathbf{G}}(f)=$ $\sum_{l=0}^{L^{\prime}-1} \mathbf{G}_{l} e^{-2 \pi i f l}$ with $\widehat{\mathbf{G}}(0)=\sqrt{2} \mathbf{I}_{r}$, and satisfies (3.1). Then from [8] if

$$
\begin{equation*}
\inf _{|f| \leq \frac{1}{4}}\left|\lambda_{l}[\widehat{\mathbf{G}(f)}]\right|>0 \tag{3.9}
\end{equation*}
$$

for any eigenfunction $\lambda_{l}[\widehat{\mathbf{G}}(f)]$ of polynomial matrix $\widehat{\mathbf{G}}(f)$, the solution $\Phi(t)$ of the two-scale dilation equation is a matrix-valued scaling function for a matrixvalued MRA, and $\left\{\Psi_{j, k}(t)=2^{\frac{j}{2}} \Psi\left(2^{j} t-k\right): j, k \in \mathbb{Z}\right\}$ forms an orthonormal basis for matrix-valued space $L^{2}(\mathbb{R}, \mathbb{C}[r])$. For designing the matrix filters with transforms $\widehat{\mathbf{G}}(f)$ and $\widehat{\mathbf{H}}(f)$ that satisfies (3.2) and for that $\widehat{\mathbf{M}}(f)$ is paraunitary , we consider

$$
\begin{equation*}
\widehat{\mathbf{G}}(f)=\frac{e^{2 \pi i f \gamma}}{\sqrt{2}}\left(\mathbf{I}_{r}+e^{\epsilon 2 \pi i f} \widehat{\mathbf{P}}(2 f)\right), \quad \epsilon \in\{-1,1\} \tag{3.10}
\end{equation*}
$$

where γ is a finite integer and $\widehat{\mathbf{P}}(2 f)$ is a (normalized) paraunitary matrix, i.e. $\widehat{\mathbf{P}}(f) \widehat{\mathbf{P}}^{\dagger}(f)=\mathbf{I}_{r}$ which satisfies $\widehat{\mathbf{P}}(f+1)=\widehat{\mathbf{P}}(f)$, and such that $\widehat{\mathbf{P}}(0)=\mathbf{I}_{r}$. The matrix $\widehat{\mathbf{G}}(f)$ satisfies conditions (3.1) and (3.2). Notice that the eigenvalues of the polynomial matrix $\widehat{\mathbf{G}}(f)$ are related to the eigenvalues of $\widehat{\mathbf{P}}(2 f)$ via $\lambda_{l}[\widehat{\mathbf{G}}(f)]=\frac{e^{2 \pi i f \gamma}}{\sqrt{2}}\left\{1+e^{\epsilon 2 \pi i f} \lambda_{l}[\widehat{\mathbf{P}}(2 f)]\right\}$. Since $\widehat{\mathbf{M}}(f)$ is paraunitary, $\widehat{\mathbf{H}}(f)$ may be chosen as

$$
\begin{equation*}
\widehat{\mathbf{H}}(f)=e^{-2 \pi i f\left(L^{\prime}-1+\delta\right)} \widehat{\mathbf{G}}^{\dagger}\left(f+\frac{1}{2}\right) \tag{3.11}
\end{equation*}
$$

where L^{\prime} is the design length of the filter \mathbf{G}_{l}, and $\delta \in\{0,1\}$ is chosen so that $L^{\prime}-1+\delta$ is odd, because by 3.5

$$
\begin{gathered}
\widehat{\mathbf{H}}(f) \widehat{\mathbf{G}}^{\dagger}(f)+\widehat{\mathbf{H}}\left(f+\frac{1}{2}\right) \widehat{\mathbf{G}}^{\dagger}\left(f+\frac{1}{2}\right) \\
=e^{-2 \pi i f\left(L^{\prime}-1+\delta\right)}\left[\widehat{\mathbf{G}}^{\dagger}\left(f+\frac{1}{2}\right) \widehat{\mathbf{G}}^{\dagger}(f)+e^{-\pi i\left(L^{\prime}-1+\delta\right)} \widehat{\mathbf{G}}^{\dagger}(f) \widehat{\mathbf{G}}^{\dagger}\left(f+\frac{1}{2}\right)\right] \\
=e^{-2 \pi i f\left(L^{\prime}-1+\delta\right)}\left[\widehat{\mathbf{G}}^{\dagger}\left(f+\frac{1}{2}\right) \widehat{\mathbf{G}}^{\dagger}(f)-\widehat{\mathbf{G}}^{\dagger}(f) \widehat{\mathbf{G}}^{\dagger}\left(f+\frac{1}{2}\right)\right]=0_{r},
\end{gathered}
$$

which provide $\widehat{\mathbf{G}}(f)$ is commutative in the sense that $\widehat{\mathbf{G}}(f) \widehat{\mathbf{G}}\left(f+\frac{1}{2}\right)=\widehat{\mathbf{G}}(f+$ $\left.\frac{1}{2}\right) \widehat{\mathbf{G}}(f)$, and indeed this condition holds when $\widehat{\mathbf{G}}(f)$ is defined as in (3.10).
The matrix $\widehat{\mathbf{H}}$ given by (3.11) is a polynomial which can be written in the form

$$
\widehat{\mathbf{H}}=\sum_{m=\delta}^{L^{\prime}-1+\delta}(-1)^{L^{\prime}-1+\delta-m} \mathbf{G}_{L^{\prime}-1+\delta-m}^{\dagger} e^{-2 \pi i f m}
$$

If L^{\prime} is even (and $\delta=0$), then comparison with $\widehat{\mathbf{H}}=\sum_{l=0}^{L^{\prime}-1} \mathbf{H}_{l} e^{-2 \pi i f l}$ we obtain $\mathbf{H}_{l}=(-1)^{l+1} \mathbf{G}_{L^{\prime}-l-1}^{\dagger}$ for $l=0,1, \ldots, L^{\prime}-1$ and we set $L=L^{\prime}$. If L^{\prime} is odd $(\delta=1)$ we can increase the filter length to an even length $L^{\prime}+$ 1 by setting $\mathbf{G}_{L^{\prime}}=0_{r}$. Then we have $\mathbf{H}_{l}=(-1)^{l+1} \mathbf{G}_{\left(L^{\prime}+1\right)-l-1}^{\dagger}$ for $l=$
$0, \ldots, L^{\prime}$, with $\mathbf{H}_{0}=0_{r}$. In this case we set $L=L^{\prime}+1$. For constructing the matrix $\widehat{\mathbf{P}}(f)$ we first consider the class of paraunitary matrices, defined by $\widehat{\mathbf{P}}(f)=\widehat{\mathbf{U}}(f) \widehat{\mathbf{D}}(f) \mathbf{U}^{\dagger}(f)$, where $\widehat{\mathbf{U}}(f)$ is an arbitrary (normalized) paraunitary polynomial matrix with $\widehat{\mathbf{U}}(0)=\mathbf{I}_{r}$, and $\widehat{\mathbf{D}}(f)$ is a diagonal matrix with diagonal elements $\widehat{\mathbf{D}}_{l, l}=e^{-2 \pi i f k_{l}}, k_{l} \in\{0,1\}$. Using the general lattice structure, the $r \times r$-matrix $\widehat{\mathbf{U}}(f)$ may be constructed by $\widehat{\mathbf{U}}(f)=\widehat{\mathbf{U}}_{q}(f), \ldots, \widehat{\mathbf{U}}_{1}(f) \mathbf{F}$, where q is a positive integer, \mathbf{F} is an $r \times r$ constant unitary matrix, i.e. $\mathbf{F}^{\dagger} \mathbf{F}=\mathbf{F F}^{\dagger}$, and $\widehat{\mathbf{U}}_{l}(f)=I_{r}+\left(e^{2 \pi i f}-1\right) \mathbf{z}_{l} \mathbf{z}_{l}^{\dagger} l=0, \ldots, q$ with $\widehat{\mathbf{z}}_{l}^{\dagger} \mathbf{z}_{l}=1$, unit-norm constant $r \times 1$-vectors. The advantage of this construction is that the matrices $\widehat{\mathbf{D}}(f)$ and $\widehat{\mathbf{P}}(f)$ are similar and hence have the same eigenvalues, and those of $\widehat{\mathbf{D}}(f)$ are known. It is thus possible to compute the eigenvalues of $\widehat{\mathbf{G}}(f)$ to check that the sufficient condition (3.9) is satisfied.

4. Main Results for $\left.\mathbb{C l}\left(\mathbb{R}^{4}\right)\right)$-MRA

Case I:
Let $r=4$, by the previous section $\widehat{\mathbf{D}}_{l, l}=e^{-2 \pi i k f}, k \in\{0,1\}, l=1,2,3,4$. So we have

$$
\widehat{\mathbf{P}}(f)=\widehat{\mathbf{U}}(f) \widehat{\mathbf{D}}(f) \mathbf{U}^{\dagger}(f)
$$

If $\widehat{\mathbf{U}}(f)=\mathbf{I}_{4}, \widehat{\mathbf{U}}$ is a paraunitary polynomial matrix which $\widehat{\mathbf{U}}(0)=\mathbf{I}_{4}$, so $\widehat{\mathbf{P}}(f)=e^{-2 \pi i k f} \mathbf{I}_{4}$, this gives the diagonal matrix $\widehat{\mathbf{G}}(f)=\frac{e^{2 \pi i f \gamma}}{\sqrt{2}}\left(1+e^{(\epsilon-2 k) 2 \pi i f}\right) \mathbf{I}_{4}$. $\widehat{\mathbf{G}}(f)$ has only one eigenvalue which is repeated and is $\lambda[\widehat{\mathbf{G}}(f)]=\frac{e^{2 \pi i f \gamma}}{\sqrt{2}}(1+$ $\left.e^{(\epsilon-2 k) 2 \pi i f}\right)$. Now if we set $\epsilon=1$ we obtain

$$
\begin{aligned}
& \lambda[\widehat{\mathbf{G}}(f)]=\frac{e^{2 \pi i f \gamma}}{\sqrt{2}}\left(1+e^{2 \pi i f}\right),(k=0) \\
& \lambda[\widehat{\mathbf{G}}(f)]=\frac{e^{2 \pi i f \gamma}}{\sqrt{2}}\left(1+e^{-2 \pi i f}\right),(k=1)
\end{aligned}
$$

which in both case the condition $|\lambda[\widehat{\mathbf{G}}(f)]|=\sqrt{1+\cos 2 \pi f}>0 \quad$, for $|f| \leq \frac{1}{4}$, is fullfaith. Hence the sufficient condition (3.9) is satisfied.
If we set $\gamma=0, \epsilon=1, k=1$, then

$$
\widehat{\mathbf{G}}(f)=\frac{1}{\sqrt{2}}\left(\begin{array}{cccc}
1+e^{-2 \pi i f} & 0 & 0 & 0 \\
0 & 1+e^{-2 \pi i f} & 0 & 0 \\
0 & 0 & 1+e^{-2 \pi i f} & 0 \\
0 & 0 & 0 & 1+e^{-2 \pi i f}
\end{array}\right)
$$

Let $f=0$, then $\widehat{\mathbf{G}}(0)=\sqrt{2} \mathbf{I}_{4}, \widehat{\mathbf{G}}\left(\frac{1}{2}\right)=0_{4}$ and in comparison with $\widehat{\mathbf{G}}(f)=$ $\sum_{l=0}^{L^{\prime}-1} \mathbf{G}_{l} e^{-2 \pi i f l}$ we have

$$
\widehat{\mathbf{G}}(f)=\left(\begin{array}{cccc}
\frac{1}{\sqrt{2}} & 0 & 0 & 0 \\
0 & \frac{1}{\sqrt{2}} & 0 & 0 \\
0 & 0 & \frac{1}{\sqrt{2}} & 0 \\
0 & 0 & 0 & \frac{1}{\sqrt{2}}
\end{array}\right)+\left(\begin{array}{cccc}
\frac{1}{\sqrt{2}} & 0 & 0 & 0 \\
0 & \frac{1}{\sqrt{2}} & 0 & 0 \\
0 & 0 & \frac{1}{\sqrt{2}} & 0 \\
0 & 0 & 0 & \frac{1}{\sqrt{2}}
\end{array}\right) e^{-2 \pi i f}
$$

This means that $\mathbf{G}_{0}=\mathbf{G}_{1}=\frac{1}{\sqrt{2}} \mathbf{I}_{4}$ so, $\mathbf{H}_{l}=(-1)^{l+1} \mathbf{G}_{L-l-1}^{\dagger}$ for $l=0,1$.
Case II:
From now on we consider $\widehat{\mathbf{G}}(f)=\frac{e^{2 \pi i f \gamma}}{\sqrt{2}}\left(\mathbf{I}_{4}+e^{\epsilon 2 \pi i f} \widehat{\mathbf{P}}(2 f)\right)$, we can make $\widehat{\mathbf{P}}(f)$ as

$$
\widehat{\mathbf{P}}(f)=\widehat{\mathbf{U}}(f) \widehat{\mathbf{D}}(f) \mathbf{U}^{\dagger}(f)
$$

(for $L_{\mathbf{M}_{Q}}^{2}(\mathbb{R}, \mathbb{C}[4])$ we set $\left.\widehat{\mathbf{U}}(f) \in \mathbf{M}_{Q} \bigcap \mathbf{U}(4)\right)$.
Set $q=1$ and $\mathbf{F}=4 \times 4$-rotation matrix

$$
\mathbf{F}=\left[\begin{array}{cccc}
\cos \theta & -\sin \theta & 0 & 0 \\
\sin \theta & \cos \theta & 0 & 0 \\
0 & 0 & \cos \theta & -\sin \theta \\
0 & 0 & \sin \theta & \cos \theta
\end{array}\right]
$$

(note that $\left.\mathbf{F} \in \mathbf{M}_{Q}\right)$. Then $\widehat{\mathbf{U}}(f)=\widehat{\mathbf{U}_{1}}(f) \mathbf{F}$ such that $\widehat{\mathbf{U}_{1}}(f)=\mathbf{I}_{4}+\left(e^{2 \pi i f}-\right.$ 1) $\mathbf{z}_{1} \mathbf{z}_{1}^{\dagger}$.

Now let $\mathbf{z}_{1}=\frac{e^{i \theta}}{\alpha}(a, b, c, d)^{T}$ so $\mathbf{z}_{1}^{\dagger}=\frac{e^{-i \theta}}{\alpha}(a, b, c, d)$ such that $\alpha=a^{2}+b^{2}+c^{2}+d^{2}$. For instant if $(a, b, c, d)=(0,0,0, \alpha), \alpha \in \mathbb{R}$, then $\mathbf{z}_{1} \mathbf{z}_{1}^{\dagger}$ is a 4×4-matrix with all entiers zero except $e_{4,4}=1$, so $\mathbf{U}_{1}(f)$ is the same matrix with $e_{4,4}=e^{2 \pi i f}$ and by choosing \mathbf{D} such that $\mathbf{D}_{1,1}=1, \mathbf{D}_{2,2}=\mathbf{D}_{3,3}=\mathbf{D}_{4,4}=e^{-2 \pi i f}$ finally we have:
(4.1)
$\widehat{\mathbf{G}}(f)=\frac{1}{\sqrt{2}}\left(\begin{array}{cccc}\cos ^{2} \theta+e^{-2 \pi i f}+e^{-4 \pi i f} \sin ^{2} \theta & \sin \theta \cos \theta-e^{-4 \pi i f} \sin \theta \cos \theta & 0 & 0 \\ \sin \theta \cos \theta-e^{-4 \pi i f} \sin \theta \cos \theta & e^{-2 \pi i f}+\sin ^{2} \theta+e^{-4 \pi i f} \cos 2 \theta & 0 & 0 \\ 0 & 0 & 2 e^{-2 \pi i f} & 0 \\ 0 & 0 & 0 & 2 e^{-2 \pi i f}\end{array}\right)$
This means that $\mathbf{G}_{0}=\frac{1}{\sqrt{2}}\left(\begin{array}{cccc}\cos ^{2} \theta & \sin \theta \cos \theta & 0 & 0 \\ \sin \theta \cos \theta & \sin ^{2} \theta & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0\end{array}\right), \mathbf{G}_{1}=\frac{1}{\sqrt{2}}\left(\begin{array}{llll}1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 2\end{array}\right)$
$\mathbf{G}_{2}=\frac{1}{\sqrt{2}}\left(\begin{array}{cccc}\sin ^{2} \theta & \sin \theta \cos \theta & 0 & 0 \\ \sin \theta \cos \theta & \cos ^{2} \theta & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0\end{array}\right)$, and since $L^{\prime}-1=3$ then $L^{\prime}=4$ so $\delta=0$.
Then we set $L=L^{\prime}=4$.
Now by $\mathbf{H}_{l}=(-1)^{l+1} \mathbf{G}_{L^{\prime}-l-1}^{\dagger}, \quad(l=0,1,2,3)$ we have

$$
\mathbf{H}_{0}=-\mathbf{G}_{3}^{\dagger}=0_{4}, \mathbf{H}_{1}=\mathbf{G}_{2}^{\dagger}, \mathbf{H}_{2}=-\mathbf{G}_{1}^{\dagger}, \mathbf{H}_{3}=\mathbf{G}_{0}^{\dagger}
$$

So from (3.1) and (3.2) we obtain the desired wavelets.

References

1. S. Mallat, Multiresolution approximation and wavelet orthogonal bases for $L^{2}(\mathbb{R})$, Trans. Amer. Math. Soc., 315 (1989), 67-78.
2. Z. Rahbani, Zeiberg-Witten equations and Twistor metric, Ms.c thesis, Faculty of Mathematics and Computer, Shahid Bahonar University, Kerman, Iran, 2004.
3. S. J. Sangwine, Fourier transform of color images using quaternion or hypercomplex numbers, Electronics Letter, 32 (21) (1996), 1979-1980.
4. S. J. Sangwine, Colour image edge detector based on quaternionic convolution, Electronics Letter, 34 (10) (1998), 969-971.
5. P. P. Viadyanathan, Multirate systems and filter banks, Englewood Cliffs, NJ:Prentice Hall, 1993.
6. A. T. Waldet, A. Serroukh, Wavelet analysis of matrix-valued time-series, Proc. R. Soc. Lond., A458 (2002), 157-179.
7. X. G. Xia, W. Sutter, Vector-valued wavelets and vector filter banks, IEEE. Trans. Signal processing, 44 (1996), 508-518.
8. X. G. Xia, Orthonormal matrix-valued wavelets and matrix Karhunen-Loeve expantion, Contemporary mathematics, 216 (1998), 159-175.
9. J. Xun He, B. Yu, Wavelet Analysis of Quaternion-valued Time-Series, J. Wavelets, Multiresolution and Information Processing, 3 (2) (2005), 233-246.

[^0]: * Corresponding Author

 Received 18 October 2009; Accepted 15 March 2010
 (c)2010 Academic Center for Education, Culture and Research TMU

