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1. Introduction

A complex-valued representation of a real 1-dimensional signal is an im-
portant tool in analysis of signal processing. The reason is that in its polar
representation, the modulus of the complex signal is identified as a local quan-
titative measure of a signal, called local amplitude, and the argument of the
complex signal is identified as a local measure for the qualitative information of
a signal, called local phase. First step for generalizing such representation sys-
tem was quaternion-valued representation, on which a signal can be expressed
by four parameters as its local quantitative measures.
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On the other hand wavelets are a very useful and wide applied tools for practi-
cal applications in signal and image processing, multi-satellite measurements of
electromagnetic wave fields, analysis of climate-related time-series and analysis
space weather effects and so on. One usual way to construct wavelets pass
through multiresolution analysis (MRA), which is a procedure for constructing
wavelets from a scaling function. Now if the scaling function is a matrix of func-
tions, we deal with matrix-valued MRAs. In this paper we show that any real
or complex Clifford algebra can be identified with a suitable matrix algebra,
then via this representation, Clifford-valued scaling functions, Clifford-valued
MRAs and Clifford wavelets are given.
Notations. For an algebra K, we denote its product with ”.”. R,C and H are
algebra of real numbers, complex numbers and quaternions, respectively. K[n]
is the algebra of n× n matrices over field K. ⊗K denotes tensor product over
field K.

This paper is organized as follow: in second section we introduce the n-
dimensional Clifford algebra (on brief) and some useful theorems on it, then
we discuss the Cl(R4) and Cl(R4) (real and complex forms of Clifford algebra on
R4, resp.) and their matrix representations. Section 3 consists of multiresolition
analysis (MRA) and Clifford wavelet structures. In section 4, we compute
Clifford wavelets matrices on R4.

2. Clifford Algebra

In this section we mention some definitions and basic facts about Clifford
algebras.

Definition 2.1. let V be a finite dimensional vector space on the field F. A
quadratic form (q-form) on V is a function h : V × V −→ F , such that
h(αx1 + x2, y) = αh(x1, y) + h(x2, y)
h(x, αy1 + y2) = αh(x, y1) + h(x, y2).

Furthermore if h(x, y) = h(y, x) then h is called symmetric. For any q-form
h, there exists a matrix representation A = (Aij) such that Aij = h(ei, ej)
where {e1, e2, · · ·, en} is a basis for V . The q-form h is called nondegenerate, if
det(h(ei, ej)) �= 0.
Let V be an n-dimensional vector space on the field F , and h be a non-
degenerate symmetric q-form on V , then there exists an ordered basis B =
{e1, e2, · · ·, en} for V such that A = (Aij) is diagonal. In particular for F = R

h(ei, ej) =
{ ±1 if i = j,

0 otherwise.

If the matrix A have p-times 1 and q-times −1 on its diameter such that p +
q = n, then h will be shown with h(p, q). For h, a nondegenerate q-form on
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real vector space V , the pair (V, h) is called a quadratic space(q-space). For
describing the Clifford algebra on vector space V , consider the commutative
tensor algebra T (V ) =

⊕∞
r=0 ⊗rV on real q-space (V, h) with unit 1. Let

Ih(V ) = 〈V ⊗ V + h(V, V )〉 then Ih is a two-sided ideal in T (V ). The quotient
space T (V )

Ih(V ) is called the Clifford algebra on V and is denoted by Cl(V, h). The
induced product, from tensor product on T(V), is called Clifford product and
will be shown with ”.”, (Cl(V, h), ”.”) is again a commutative algebra with
unit. If h is h(p, q) then Cl(V, h) will be shown by Cl(p, q).
By considering the canonical projection map πh : T (V ) −→ Cl(V, h), one can
find that the map θV : V −→ Cl(V, h) is one-to-one. This fact says that
Cl(V, h) is generated by vector space V ⊂ Cl(V, h) and identity 1, and its
product satisfies the following relations:
1) v · v = −h(v, v)1 for any v ∈ Cl(V, h)
2) v · w + w · v = −2h(v, w).
In view of previous equations we can obtain the universal map for Clifford
algebras as follow:

Proposition 2.1. Let A be a commutative K-Algebra with unit 1, and f :
V −→ A be a linear map such that: f(v)·f(v) = −h(v, v)1 for any v ∈ V , then
f can be uniquely extended to the algebraic homomorphism f̃ : Cl(V, h) −→ A.
Furthermore, Cl(V, h) is the unique associated K-Algebra with this property.

In other word if (V, h) is a q-space, then there exists a Clifford algebra as-
sociated to it and is unique up to an isomorphism. This is easy to show that
if {e1, e2, · · ·, en} is an orthonormal basis for real vector space V , then the set
{1, ei, eiej , eiejek, · · ·, e1e2e3 · · · en : i+ 1 = j, j+ 1 = k} is a basis for Cl(V, h).
Note that Cl(V, h) = T (V )

Ih
= R⊕V ⊗V ⊕V ⊗V ⊗V ⊕···

〈V ⊗V +h(V )1〉 , and

T (V ) = a0+
n∑

i=1

aiei+
∑

aijei⊗ej+
∑

aijkei⊗ej⊗ek+···+ai1...ine1⊗e2⊗. . .⊗en.

Also V ⊗ V + h(V )1 = 0 implies that V ⊗ V = −h(V )1.

Example 2.2. Let V = R2, and h be the quadratic form obtained by the matrix

h =

(
1 0

0 1

)
, i.e V = R2 = 〈e1, e2〉. DimV = 2, so dimCl(V ) = 4 and

Cl(V ) = Cl(R2) = 〈1, e1, e2, e1e2〉
= {a0 + a1e1 + a2e2 + a12e1e2 : e12 = e2

2 = −1, e1 · e2 = −e2 · e1}
where (e1 · e2)2 = e1e2e1e2 = −e1e1e2e2 = (−1)(−1)(−1) = −1.
So if we define ψ : Cl(R2) −→ H by

ψ(1) = 1, ψ(e1) = i, ψ(e2) = j, ψ(e1e2) = ψ(e3) = k

then, since ψ is an algebraic homomorphism, Cl(R2) ∼= H.
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There are useful algebraic isomorphisms for Cl(p, q) such as

(2.1) Cl(n, 0) ⊗ Cl(0, 2) ∼= Cl(0, n+ 2)

Cl(0, n) ⊗ Cl(2, 0) ∼= Cl(n+ 2, 0)

Cl(p, q) ⊗ Cl(1, 1) ∼= Cl(p+ 1, q + 1),

where n, p, q ≥ 0 such that n = p+ q.
Now we introduce a useful tool. Complexification is one of the important tools
in linear algebra which make it more flexible. Let (V, h) be a real q-space.
The complexification of V is the vector space W = V ⊗C C such that for
w ∈ W : w = v ⊗ λ = v ⊗ (a+ ib) = v ⊗ a+ v ⊗ ib = 1 ⊗ av + i(1 ⊗ bv). This
means that any element of W can be written as x+iy where x, y ∈ V. Now let g
be a nondegenerate q-form on V . Then gW : W ×W −→ C is a nondegenerate
q-form on W = V ⊗C defined by gW (x⊗λ, y⊗γ) = λγg(x, y). From this point
of view the complexification of Cl(V ) is Cl(V ) ⊗ C and if W = V ⊗C C then
Cl(W ) = Cl(V ) ⊗R C.

Lemma 2.3. Let V be a real n-dimensional vector space, then

Cl(V ⊕ R2) ⊗ C ∼= (Cl(V ) ⊗R C) ⊗C (Cl(R2) ⊗ C).

Proof. Let {ν1, · · ·, νn} be an orthonormal basis for V and {e1, e2} be the
standard basis for R2. Consider the real map θ : V ⊕R2 −→ (Cl(V )⊗R C)⊗C

(Cl(R2) ⊗ C) defined by

(νj , 0) �−→ iνj ⊗ e1e2, 1 ≤ j ≤ n, (0, er) �−→ 1 ⊗ er r = 1, 2.

so θ extends to algebra homomorphism Cl(V ⊕ R2) ⊗ C ∼= (Cl(V ) ⊗R C) ⊗C

(Cl(R2)⊗C). On the other hand domain and range of θ have the same dimen-
sion and it is onto, so θ is isometry.

�

the following lemma is the key tool for describing the complex Clifford alge-
bras.

Lemma 2.4. Let V be a real vector space such that dimV = 2n, then
Cl(V ) ⊗R C is isomorphic to the matrix algebra C[2n].
If dimV = 2n+ 1 then Cl(V ) ⊗R C is isomorphic to C[2n] ⊕ C[2n].

Proof. We refer interested reader to [2], for an extended proof. �

2.1. Construction of Clifford Algebra on R4. Now we are going to show
that for V = R4, Cl(V ) is H[2] ∼= C[4]. We know that, via the algebraic
isomorphism

a+ bi+ cj + dk �−→
(

a+ id b+ ic

−b+ ic a− id

)
,
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H is isomorphic to C[2]. Now if V = R4 = 〈e0, e1, e2, e3〉 with Riemannian form

h =

⎛⎜⎜⎜⎝
1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

⎞⎟⎟⎟⎠ on it, then

Cl(R
4
) = {a0+

4∑
i=1

aiei+
∑
i<j

aijeiej+
∑

i<j<k

aijkeiejek+a1234e1e2e3e4 : eiej = −ejei, ei
2

= −1, ai ∈ R}

this means that Cl(R4) is spanned by 24 = 16 vectors:

1, E1, E2, E3, E4, E1E2, E1E3, E1E4, E2E3, E2E4, E3E4,

E1E2E3, E1E2E4, E1E3E4, E2E3E4, E1E2E3E4,

as a basis. On the other hand

Cl(0, 2) = Cl(R2,

(
−1 0

0 −1

)
) = 〈e0, e1, e2, e3 = e1e2〉

where e0 =
(

1 0
0 1

)
, e1 =

(
0 1
1 0

)
, e2 =

(
1 0
0 −1

)
, e3 =

(
0 −1
1 0

)
such that e02 = e1

2 = e2
2 = 1, (e1e2)

2 = −1 and

Cl(2, 0) = Cl(R2,

(
1 0
0 1

)
) ∼= H = 〈e0′, e1′, e2′, e3′ = e1

′e2′〉

where e0′ =
(

1 0
0 1

)
, e1′ =

(
0 1

−1 0

)
, e2′ =

(
0 i

i 0

)
, e3′ =

(
i 0
0 −i

)
.

Now if in (2.1) we set n = 2 then

Cl(0, 2) ⊗ Cl(2, 0) ∼= Cl(4, 0).

Through the relation A⊗B = (AijB) between matrices we can find the matrix
representation for Cl(4, 0)’s bases:
E0 = e0 ⊗ e0

′ = I, E1 = e0 ⊗ e3
′, E2 = e2 ⊗ e1

′, E3 = e1 ⊗ e1
′, E4 =

e0 ⊗ e2
′, E1E2 = e2 ⊗ e2

′, E1E3 = e1 ⊗ e2
′, E1E4 = −(e0 ⊗ e1

′), E2E3 =
e3 ⊗ e0

′, E2E4 = e1 ⊗ e3
′, E3E4 = e2 ⊗ e3

′, E1E2E3 = e3 ⊗ e3
′, E1E2E4 =

−(e2 ⊗ e0
′), E2E3E4 = e3 ⊗ e2

′, E1E3E4 = −(e1 ⊗ e0
′), E1E2E3E4 = −(e3 ⊗

e1
′).

This means that for any ρ ∈ Cl(R4) we have

ρ = a0+a1E1+a2E2+a3E3+a4E4+a12E1E2+a13E1E3+a14E1E4+a24E2E4

+a34E3E4 + a23E2E3 + a123E1E2E3 + a124E1E2E4

+a234E2E3E4 + a134E1E3E4 + a1234E1E2E3E4

By the above matrix representation for Ei’s, associated matrix to ρ is:
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⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a0 + a1i + a34i− a2 + a4i + a12i− −a24i − a23 − a123i− a3 + a13ia234i+

a124 a14 a134 a1234

−a2 + a4i + a12i+ a0 − a1i − a34i− −a3 + a13i − a234i− −a23 + a24i + a123i−
a14 a124 a1234 a134

a23 + a24i + a123i− a3 + a13i + a234i− a0 + a1i − a34i+ −a2 + a4i − a12i−
a134 a1234 a124 a14

−a3 + a13i + a234i+ a23 − a24i − a123i− a2 + a4i − a12i+ a0 − a1i + a34i+

a1234 a134a a14 a124

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Now if we set
A1 = a0 + ia1, B1 = −a124 + ia34, A2 = a2 + ia4, B2 = a14 + ia12, A3 =
a23 + ia24, B3 = −a134 + ia123, A4 = a3 + ia13, B4 = a1234 + ia234,

and then set A = A1 +B1, B = A1 −B1, C = A2 −B2, D = A2 +B2,

E = A3 +B3, F = −A3 +B3, G = A4 +B4, H = A4−B4, ρ can be shown
as

(2.2) ρ ∼=

⎛⎜⎝ A −C F −G

C A G F

E −H B −D

H E D B

⎞⎟⎠ := MQ,

A simpler representation for ρ is ρ =
(
α β

γ λ

)
, which is a 2 × 2−matrix in

H, with α = A− jC, β = F − jG, γ = E − jH, λ = B − jD.
Till now we’ve found the matrix representations for Cl(R4) such that H[2] ∼=
C[4]. By considering the complexification of Cl(R4) we will work with C[4],
which is a more general and flexible case.
Let MQ be the set of all 4× 4−matrices in C[4] which are like above then MQ

excepting the zero matrix is a subgroup of GL(2,C) in the sense of matrix
multiplication.
In next step we generalize these concepts to an MRA.

3. Cl(R4)-valued MRA

3.1. General construction and mask functions. Let L2(R,C[r]) = {F(t) =
(Fm,n(t)) : t ∈ R, Fm,n ∈ L2(R), 1 ≤ m,n ≤ r} be the space of matrix-
valued functions defined on R with values in C[r]. The norm on L2(R,C[r]) is
the Ferobenious norm : ‖ F(t) ‖= [

∑
m,n

∫
R
|Fm,n(t)|2dt] 1

2 and for F,G ∈
L2(R,C[r]), the ”inner product” is defined by 〈F,G〉L2(R,C(r)) :=

∫
R
F(t)G†(t)dt

where G† is the complex conjugate transpose of G. As pointed out in [7] and
[8] such operation, which is an integral of matrix product, is not really an inner
product but it has the linear and commutative properties:
1.〈F1, aF2 + bF3〉 = a†〈F1,F2〉 + b†〈F1,F3〉
2.〈F1,F2〉 = 〈F2,F1〉†.
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Here the orthogonality of Fj and Fk is identified with 〈Fj ,Fk〉 = Irδjk where
Ir is identity matrix and δjk the Kronecker delta. Now let X(t) be a Cl(R4)-
valued function. Then X(t) via its components has a representation like MQ,
as shown in (2.2) and matrix representation of X(t) is shown with MQ(X).
Define L2

MQ
(R,C[4]) = {MQ(X) : xij ∈ L2(R), 1 ≤ i, j ≤ 4} ⊆ L2(R,C[4]),

and

L2(R,Cl(R4)) = {X(t) = x0(t) + x1(t)E1 + . . .+ x1234(t)E1234 : xi ∈ L2(R)},
then we can identify L2(R,Cl(R4)) with L2

MQ
(R,C[4]) by T : L2(R,Cl(R4)) −→

L2
MQ

(R,C[4]) such that

X(t) �−→

⎛⎜⎝ xA −xC xF −xG

xC xA xG xF

xE −xH xB −xD

xH xE xD xB

⎞⎟⎠ = MQ(X),

where xA = x0(t) + ix1(t) + ix34(t) − x124(t) and all other entries are similar
to MQ’s entries.
Immediately we realize that 〈X,Y〉L2(R,Cl(R4)) �−→ 〈MQ(X),MQ(Y)〉L2

MQ
(R,C[4]),

where 〈X,Y〉L2(R,Cl(R4)) =
∫

R
XY†dt.

Now by considering Cl(R4) ∼= C[4], we will investigate some results in matrix-
valued MRAs.

Definition 3.1. The matrix-valued function Φ(t) = (ϕm,n(t))r×r ∈ L2(R,C[r])
generates a matrix-valued multiresolution analysis for L2(R,C[r]) if the sub-
spaces Vj = span{2 j

2 Φ(2jt − k) : k ∈ Z} are nested: · · · ⊂ V−1 ⊂ V0 ⊂
V1 ⊂ V2 · · · , and the following conditions hold:
1)
⋃

j∈Z
Vj = L2(R,C[r]),

2)
⋂

Vj = 0r, in which 0r is the r × r-zero matrix.
3)X(t) ∈ V0 ⇐⇒ X(2jt) ∈ Vj , j ∈ Z,
4)X(t) ∈ V0 ⇐⇒ X(t− k) ∈ V0, k ∈ Z,
5) {Φ(t− k) : k ∈ Z} form an orthonormal basis for V0.

Remark 3.1. : A sequence {Φk}k∈Zin L2(R,C(r)) is called an orthonor-
mal basis if it is an orthonormal set, 〈Φj ,Φk〉 = Irδjk, and for any X(t) ∈
L2(R,C[r]) there exists constant matrix-sequence {Ak}k∈Z such that X(t) =∑

k∈Z
AkΦk(t).

Condition (5) means that X(t) =
∑

k∈Z
AkΦk(t − k), which Ferobenious

norm will guarantee the convergence of infinite sum, and Ak = 〈X,Φk(t− k)〉
by orthonormality. Also since Φ(t) ∈ V0 ⊂ V1, then the two-scale matrix
dilation equation is

(3.1) Φ(t) =
√

2
∑
k∈Z

GkΦ(t− k)
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which combined with orthonormality of Φ’s means

(3.2)
∑
k∈Z

GkG
†
2l+k = Irδl0, l ∈ Z .

Let Ĝ(f) =
∑

k∈Z
Gke

−2πikf be the matrix mask function, then (3.2) implies
that

(3.3) Ĝ(f)Ĝ
†
(f) + Ĝ(f +

1
2
)Ĝ

†
(f +

1
2
) = 2Ir,

Define matrix Fourier transform for Φ(t) by Φ̂(f) :=
∫

R
Φ(t)e−2πikftdt. Then

(3.1) gives Φ̂(f) = 1√
2
Ĝ(f

2 )φ̂(f
2 ), where by setting f = 0 we get Ĝ(0) =∑

Gk =
√

2Ir , Ĝ(1
2 ) = 0. Define the function matrix Ψ(t) = (ψm,n(t))r×r ∈

L2(R,C[r]) and corresponding subspace Wj = span{2 j
2 Ψ(2jt − k) : k ∈

Z}. Wj is orthogonal complement of Vj in Vj+1 i.e. Vj+1 = Vj ⊕ Wj ,
Vj ⊥ Wj and

⊕
j∈Z

Wj = L2(R,C[r]). Since Ψ(t) ∈ W0 ⊆ V1, then
Ψ(t) =

√
2
∑

k∈Z
HkΦ(2t− k). Combining this formula with (3.1) gives us

(3.4)
∑
k∈Z

GkH
†
2l+k = 0r, l ∈ Z.

Now if Ĥ(f) =
∑

k∈Z
Hke

−2πikf then

(3.5) Ĥ(f)Ĝ
†
(f) + Ĥ(f +

1
2
)Ĝ

†
(f +

1
2
) = 0r,

and Ψ̂(f) = 1√
2
Ĥ(f

2 )φ̂(f
2 ). If {Ψ(t − k) : k ∈ Z} is an orthonormal basis for

W0 then

〈Ψ,Ψ(t− k)〉 =
∫

R

Ψ(t)Ψ(t− k)dt = Irδk0 k ∈ Z,

which implies the following relation for the matrix of wavelet mask function:

(3.6)
∑
k∈Z

HkH
†
2l+k = Irδl0, l ∈ Z.

This is equivalent to

(3.7) Ĥ(f)Ĥ
†
(f) + Ĥ(f +

1
2
)Ĥ

†
(f +

1
2
) = 2Ir.

Define M̂(f) =

(
Ĝ(f) Ĝ(f + 1

2 )
Ĥ(f) Ĥ(f + 1

2 )

)
then equations (3.3),(3.5),(3.7) all to-

gether are equivalent to

(3.8) M̂(f)M̂
†
(f) = 2I2r,

which means M̂(f) is a paraunitary matrix.
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3.2. Construction of filters. After constructing the mask function represen-
tation, now we are ready to describe and build filters. Suppose that Ĝ(f) is
a finite polynomial matrix in e−2πif , i.e. can be written in the form Ĝ(f) =∑L′−1

l=0 Gle
−2πifl with Ĝ(0) =

√
2Ir, and satisfies (3.1). Then from [8] if

(3.9) inf
|f |≤ 1

4

|λl[Ĝ(f)]| > 0

for any eigenfunction λl[Ĝ(f)] of polynomial matrix Ĝ(f), the solution Φ(t) of
the two-scale dilation equation is a matrix-valued scaling function for a matrix-
valued MRA, and {Ψj,k(t) = 2

j
2 Ψ(2jt − k) : j, k ∈ Z} forms an orthonormal

basis for matrix-valued space L2(R,C[r]). For designing the matrix filters with
transforms Ĝ(f) and Ĥ(f) that satisfies (3.2) and for that M̂(f) is paraunitary
, we consider

(3.10) Ĝ(f) =
e2πifγ

√
2

(Ir + eε2πif P̂(2f)), ε ∈ {−1, 1}

where γ is a finite integer and P̂(2f) is a (normalized ) paraunitary matrix, i.e.

P̂(f)P̂
†
(f) = Ir which satisfies P̂(f+1) = P̂(f), and such that P̂(0) = Ir. The

matrix Ĝ(f) satisfies conditions (3.1) and (3.2). Notice that the eigenvalues
of the polynomial matrix Ĝ(f) are related to the eigenvalues of P̂(2f) via
λl[Ĝ(f)] = e2πifγ√

2
{1 + eε2πifλl[P̂(2f)]}. Since M̂(f) is paraunitary, Ĥ(f) may

be chosen as

(3.11) Ĥ(f) = e−2πif(L′−1+δ)Ĝ
†
(f +

1
2
)

where L′ is the design length of the filter Gl, and δ ∈ {0, 1} is chosen so that
L′ − 1 + δ is odd, because by 3.5

Ĥ(f)Ĝ
†
(f) + Ĥ(f +

1
2
)Ĝ

†
(f +

1
2
)

= e−2πif(L′−1+δ)[Ĝ
†
(f +

1
2
)Ĝ

†
(f) + e−πi(L′−1+δ)Ĝ

†
(f)Ĝ

†
(f +

1
2
)]

= e−2πif(L′−1+δ)[Ĝ
†
(f +

1
2
)Ĝ

†
(f) − Ĝ

†
(f)Ĝ

†
(f +

1
2
)] = 0r,

which provide Ĝ(f) is commutative in the sense that Ĝ(f)Ĝ(f + 1
2 ) = Ĝ(f +

1
2 )Ĝ(f), and indeed this condition holds when Ĝ(f) is defined as in (3.10).
The matrix Ĥ given by (3.11) is a polynomial which can be written in the form

Ĥ =
L′−1+δ∑

m=δ

(−1)L′−1+δ−mG†
L′−1+δ−me

−2πifm.

If L′ is even (and δ = 0), then comparison with Ĥ =
∑L′−1

l=0 Hle
−2πifl we

obtain Hl = (−1)l+1G†
L′−l−1 for l = 0, 1, . . . , L′ − 1 and we set L = L′. If

L′ is odd (δ = 1) we can increase the filter length to an even length L′ +
1 by setting GL′ = 0r. Then we have Hl = (−1)l+1G†

(L′+1)−l−1 for l =
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0, . . . , L′, with H0 = 0r. In this case we set L = L′ + 1. For constructing
the matrix P̂(f) we first consider the class of paraunitary matrices, defined by
P̂(f) = Û(f)D̂(f)U†(f), where Û(f) is an arbitrary (normalized) paraunitary
polynomial matrix with Û(0) = Ir, and D̂(f) is a diagonal matrix with diagonal
elements D̂l,l = e−2πifkl , kl ∈ {0, 1}. Using the general lattice structure, the
r× r-matrix Û(f) may be constructed by Û(f) = Ûq(f), . . . , Û1(f)F, where q
is a positive integer, F is an r×r constant unitary matrix, i.e. F†F = FF†, and
Ûl(f) = Ir + (e2πif − 1)zlz

†
l l = 0, . . . , q with ẑ†l zl = 1, unit-norm constant

r×1-vectors. The advantage of this construction is that the matrices D̂(f) and
P̂(f) are similar and hence have the same eigenvalues, and those of D̂(f) are
known. It is thus possible to compute the eigenvalues of Ĝ(f) to check that
the sufficient condition (3.9) is satisfied.

4. Main results for Cl(R4))-MRA

Case I:
Let r = 4, by the previous section D̂l,l = e−2πikf , k ∈ {0, 1}, l = 1, 2, 3, 4. So
we have

P̂(f) = Û(f)D̂(f)U†(f)

If Û(f) = I4, Û is a paraunitary polynomial matrix which Û(0) = I4, so
P̂(f) = e−2πikfI4, this gives the diagonal matrix Ĝ(f) = e2πifγ√

2
(1+e(ε−2k)2πif)I4.

Ĝ(f) has only one eigenvalue which is repeated and is λ[Ĝ(f)] = e2πifγ√
2

(1 +

e(ε−2k)2πif ). Now if we set ε = 1 we obtain

λ[Ĝ(f)] =
e2πifγ

√
2

(1 + e2πif ), (k = 0)

λ[Ĝ(f)] =
e2πifγ

√
2

(1 + e−2πif ), (k = 1)

which in both case the condition |λ[Ĝ(f)]| =
√

1 + cos 2πf > 0 , for|f | ≤ 1
4 ,

is fullfaith. Hence the sufficient condition (3.9 ) is satisfied.
If we set γ = 0, ε = 1, k = 1, then

Ĝ(f) =
1√
2

⎛⎜⎜⎝
1 + e−2πif 0 0 0

0 1 + e−2πif 0 0
0 0 1 + e−2πif 0
0 0 0 1 + e−2πif

⎞⎟⎟⎠ .
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Let f = 0, then Ĝ(0) =
√

2I4, Ĝ(1
2 ) = 04 and in comparison with Ĝ(f) =∑L′−1

l=0 Gle
−2πifl we have

Ĝ(f) =

⎛⎜⎜⎜⎝
1√
2

0 0 0
0 1√

2
0 0

0 0 1√
2

0
0 0 0 1√

2

⎞⎟⎟⎟⎠+

⎛⎜⎜⎜⎝
1√
2

0 0 0
0 1√

2
0 0

0 0 1√
2

0
0 0 0 1√

2

⎞⎟⎟⎟⎠ e−2πif .

This means that G0 = G1 = 1√
2
I4 so, Hl = (−1)l+1G†

L−l−1 for l = 0, 1.

Case II:
From now on we consider Ĝ(f) = e2πifγ√

2
(I4 + eε2πif P̂(2f)), we can make P̂(f)

as
P̂(f) = Û(f)D̂(f)U†(f)

(for L2
MQ

(R,C[4]) we set Û(f) ∈ MQ

⋂
U(4)).

Set q = 1 and F = 4 × 4-rotation matrix

F =

⎡⎢⎢⎣
cos θ − sin θ 0 0
sin θ cos θ 0 0

0 0 cos θ − sin θ
0 0 sin θ cos θ

⎤⎥⎥⎦ ,
(note that F ∈ MQ). Then Û(f) = Û1(f)F such that Û1(f) = I4 + (e2πif −
1)z1z

†
1.

Now let z1 = eiθ

α (a, b, c, d)T so z†1 = e−iθ

α (a, b, c, d) such that α = a2+b2+c2+d2.
For instant if (a, b, c, d) = (0, 0, 0, α), α ∈ R, then z1z

†
1 is a 4 × 4-matrix with

all entiers zero except e4,4 = 1, so U1(f) is the same matrix with e4,4 = e2πif

and by choosing D such that D1,1 = 1,D2,2 = D3,3 = D4,4 = e−2πif finally we
have:
(4.1)

Ĝ(f) =
1√
2

⎛⎜⎜⎜⎝
cos2 θ + e−2πif + e−4πif sin2 θ sin θ cos θ − e−4πif sin θ cos θ 0 0

sin θ cos θ − e−4πif sin θ cos θ e−2πif + sin2 θ + e−4πif cos2 θ 0 0

0 0 2e−2πif 0

0 0 0 2e−2πif

⎞⎟⎟⎟⎠ .

This means that G0 = 1√
2

⎛⎜⎜⎝
cos2 θ sin θ cos θ 0 0

sin θ cos θ sin2 θ 0 0

0 0 0 0

0 0 0 0

⎞⎟⎟⎠ , G1 = 1√
2

⎛⎜⎜⎝
1 0 0 0

0 1 0 0

0 0 2 0

0 0 0 2

⎞⎟⎟⎠

G2 = 1√
2

⎛⎜⎜⎝
sin2 θ sin θ cos θ 0 0

sin θ cos θ cos2 θ 0 0

0 0 0 0

0 0 0 0

⎞⎟⎟⎠ , and since L′−1 = 3 then L′ = 4 so δ = 0.

Then we set L = L′ = 4.
Now by Hl = (−1)l+1G†

L′−l−1, (l = 0, 1, 2, 3) we have

H0 = −G†
3 = 04, H1 = G†

2, H2 = −G†
1, H3 = G†

0.

So from (3.1) and (3.2) we obtain the desired wavelets.
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